The Year in Biomimicry: Fins For Humans, The Aquapenguin and Robots With Whiskers

It's time to review last year's bio-inspired products and services and pick my favorites, and, since this is my “sandbox,” I have decided to shamelessly name my awards the Tommies.

I have also decided to give the awards to the creatures that inspired the innovation, rather than the human inventors. As a consolation, however, I will offer to buy each human an Irish coffee at the Buena Vista Bar here in San Francisco. Email me; I would be honored to talk to each of you, whenever you visit!

The penguin, in the strictest biomechanical sense, doesn't really swim underwater, but rather flies. That is, the creature gets both lift and thrust from the action of its flapping, planar wings. It has inspired the latest development in robots highlighted by the German engineering firm Festo AG at the Hanover Messe Trade Exhibition in April.

The Aquapenguin (right) mimics the hydrodynamic body features of the bird and is made with soft material and glass fibre rods, a motor and 3D sonar device by Evologics of Berlin. These allow the bot to swim with great flexibility and avoid collisions with obstacles or other swimmers, important in situations demanding a high degree of flexibility and autonomy. Festo has already developed a commercial product, an industrial arm with a gripper end, based on this technology.

The manta ray also flies underwater and inspired another Festo product that took to the skies. The Air_ray (below) is a remote-controlled helium-filled ballonet made of aluminum vaporized PET foil and shaped like the ray. It contains a small servo that beats its 6-foot wings with a clever linkage mechanism modeled after the tail fins of many fish. Two alternating pressure and tension flanks are connected by ribs. When one flank is pressured, the structure bends from its geometry in the direction opposed to the force. While super light (the buoyancy of the helium can only support 1.6 kg of weight), the Air_ray can perform some simple maneuvers including loop-de-loops and flying backwards. The slow moving Air_ray can also carry a camera.

The Morpho butterfly, along with many other insects and birds, exhibits brilliant colors because of the nanostructure of the microscopic scales on its wings. White light is broken up by this surface. Its component colors, of different wavelengths, are bounced back in a different array. Some colors cancel each other out which is why you might see the shifting hues in a peacock's feathers. This phenomenon inspired the structural color display Mirasol (next page), developed by the Qualcomm Corporation