The Year in Biomimicry: How Beetles, Mantis Shrimp & More Inspired Innovation

Yes, it's that time of year again: Time for the third annual Tommies, my pick of the top 10 bio-inspired innovations of 2011.

My prize offer to any of the innovators still stands: Have an Irish coffee with me at the Buena Vista in San Francisco.

Here are the inventions or discoveries arranged by the organisms that inspired them:

1. Herring Gull. This long-lived coastal bird is a common sight along the entire shore of western and northern Europe. Our familiarity with its appearance, however, cannot mask our wonder at its aerial acrobatics. The bird is a consummate flyer and had inspired the volken at the Bionic Learning Network of Festo AG and Co. of Germany to accomplish another impressive feat of bio-inspired engineering.

SmartBird is a 485 gram construction of foam plastic and carbon fiber, a few servomotors, gears and linkages that accomplishes something man has tried and failed at for centuries -- heavier than air flight that truly mimics the biomechanics of birds.SmartBird image courtesy of the Bionic Learning Network of Festo

This device gains both thrust and lift from the flapping of flexible two-part wings, a concept that aeronautic engineers had abandoned in frustration long ago.

The design team, led by Markus Fischer and Wolfgang Send, claims that the device achieves an 80 percent aerodynamic efficiency and is able to maintain optimum airflow through its sophisticated software control system and the active torsion in its wing surfaces. The bending of its wing surfaces is precisely coordinated with the flapping of the wings to produce this milestone in both biomimetics and aeronautics.

This breakthrough was gained through a combination of intense study of the mechanics of bird flight, an informed translation to the optimum materials available and an understanding that a precise integration of forces was necessary to mimic the complex sensing and movement needed to maintain airflow over an active wing.

2. Pitcher Plant. This swamp-dwelling plant lives in soil conditions that are nutrient poor and has evolved to get its daily requirements in another way -- by putting meat on the menu. It captures insects by trapping them in its watery bowl where they are dissolved and absorbed by the plant. The lipped bowl, a modified leaf, is effective, in part, because of its ultra slippery surface.

The scientists at the Aizenberg Lab of the Wyss Institute for Biologically Inspired Engineering at Harvard were looking for a slick natural surface material and the Pitcher Plant emerged as their top candidate for study. Their initial goal was to synthesize a material that was "omniphobic," that repelled everything.

Research by Bohn and Federle in 2004, had revealed the unique properties of the plant's peristome, the rounded lip of the "bowl." Overlapping wet cells formed anisotropic ridges in which an aqueous solution was held in surface tension as a thin film. The edge formed, in effect, a tiny Slip'N Slide, and even ants, with their suction-cup footpads, could not get a grip on the surface and would aquaplane to their doom.

The Harvard team needed to produce a structure that was fully wetted by lubricating liquid, this material must prefer to retain this liquid over any other that was poured on it, and both liquids must be immiscible, in other words, not able to be blended. They fabricated a random matrix of Teflon nanofibers that they filled with a low-tension perfluorinated proprietary liquid from 3M (Fluorinet FC-70) .

They have called their product SLIPS ( Slippery Liquid Infused Porous Surface), and it does, indeed, appear to repel everything: -- blood, oil, even ice cannot form on its surface. Things slip off at a mere 2-degree angle and liquids that would stain other slippery surfaces completely exit the surface. What they have won is the product development trifecta: the new material is not only self-cleaning, but also self -healing and self- organizing. When cuts are made in the structural matrix, the liquid quickly fills the gaps and the slippery surface performance continues unabated.

Lead researcher Tak Sing Wong reports the new biomaterial has performed well at low temperatures and high pressures and he believes it to be more slippery than Teflon, the reigning slick solid of our industrial world. It would be useful for a range of biomedical, industrial and other applications, such as pipe coatings, self-cleaning public surfaces and de-icing applications. Not the least, its transparency potential and self-cleaning make it an excellent choice for lenses, sensors and solar cells.

The nature inspired innovators here turned a problem inside out. How to make a slippery surface? First, consider that not all surfaces are solid. Indeed, as far as performance goes, the material structure of the plant is more important for its voids than for its solid matrix, for it is the liquid that does the work of sliding insects to the waiting bowl. Once this became the contact material, the liquid medium brought additional characteristics: liquids typically organize themselves by molecular bonding, and they can fill gaps in solids automatically, thus adding the benefits of self-organizing and self-healing. This is an excellent example of "surfing for free" where devices take advantage of natural physical, material or structural properties in order to do work.

3. Homo Sapiens. There are at least 10 different types of eye mechanisms in the animal world, and the device that humans possess is a wonder of evolutionary engineering. We are able to focus our eyes automatically to a wide range of distances, even while running. Cillary muscles surrounding the crystalline lens contract and relax as needed to deform the lens of our eye for the different focal lengths needed.

Just such a "tunable" lens would be very useful in the fields of consumer electronics, medical diagnostics and optical communications. Much research has been done on artificial lenses and their actuators; smart devices that are triggered by mechanical, optical, electrical, thermal or chemical means.

Professor Danilo De Rossi and his team at the School of Engineering, University of Pisa, have devised a tunable lens using an electroactive elastomer as an artificial muscle, much like in the human eye. A fluid-filled elastomeric lens is integrated with a ring of dielectric elastomeric actuator. Upon electrical activation or deactivation, the actuator relaxes or stretches the lens, changing the focal length. The De Rossi team has been able to replicate the focal range of the human eye using this synthesized device. The potential benefits lie in its silent operation, low power usage, relative durability and resistance to shock and overheating.

The bio-innovation concept here is substituting information for material or energy. In this case, the information is embedded in the elastomeric material. Its properties allow a consistent and predictable range of performance once triggered by a tiny electrical charge. Simple, lightweight and durable parts and systems save money, and nature has a lot to teach us on this score.

Next Page: The Namib Desert Beetle and more