How UC Irvine redefines efficiency in laboratories

Even before becoming a signatory to the American College and University Presidents' Climate Commitment in 2007, facility managers at the University of California, Irvine were challenging conventional notions of energy efficiency in the campus' laboratories.

UCI engineers took note of the fact that gains in energy efficiency had plateaued at about 20 to 25 percent better than code, a number that was not sufficient enough to meet the ACUPCC's climate neutral goal. Campus leaders set their energy efficiency goals much higher  to reduce energy consumption by 50 percent in both new and retrofitted laboratories through their Smart Labs system.

They targeted recently constructed laboratories, which possessed the unexploited potential to be far more efficient if variable-air volume features and digital controls could be integrated with advanced air quality and occupancy sensors driving smarter control logic. The end goal was to reduce air changes per hour when conditions permit, on a space-by-space basis.

Campus engineers developing the technology worked under a "binding requirement that these energy savings could not be achieved at the expense of occupant safety," according to Wendell Brase, UCI's vice chancellor for administrative and business services and chair of the University of California's Climate Solutions Steering Group.

Because research universities' laboratories are extraordinarily large energy consumers, reducing the labs' energy consumption is the primary way to shrink the institution's utility budget. "For most research universities, laboratories consume two-thirds of the campus' energy. On a per-square-foot basis, laboratories typically consume six to 10 times as much energy in a year as nonlab spaces on campus," Brase said.

Why is this the case? "The short answer is ventilation," Brase said. Regulations require that laboratory buildings use 100 percent fresh air for ventilation, with no recirculation of the return air. As a result, the entire volume of the building's air is pushed out of exhaust stacks every five to eight minutes  requiring an enormous amount of energy to supply, heat, cool, humidify, dehumidify, filter, distribute and exhaust the air.

This complete exchange of air, or air changes per hour, occurs 10 or more times per hour, 24 hours a day, seven days a week at laboratories in colleges and universities, the private sector and government research facilities across the United States. For one laboratory building on a campus, that is approximately 80,000 complete air changes per year. Significantly reducing this energy consumption is essential in meeting UCI's climate neutrality goal.

What makes a Smart Lab so smart?

There is no single technology that constitutes a Smart Lab, but rather an integration of design criteria and performance standards, including variable-air volume features and digital controls with advance air quality and occupancy sensors, that reduce and tailor the number of air exchanges per hour on a space-by-space basis. In addition to generating energy savings nearing 60 percent, this level of granular focus supplies staff with constant air-quality data that provides important information about the safety of the building.

Next page: Seven steps to retrofit existing labs