
Mark Tester
Professor of Plant Science & Associate Director of Center for Desert Agriculture
KAUST
Professor Tester's research program is to elucidate the molecular genetic mechanisms that enable certain plants to thrive in sub-optimal conditions, such as those of high salinity or high temperature, and then deliver the outputs in economically viable systems. In our research group, forward and reverse genetic approaches are used to understand and manipulate traits that contribute to salinity tolerance and improve this in crops such as barley, rice, tomatoes and quinoa.
One intellectual aim is to understand the coordination of whole plant function through processes occurring at the level of single cells, particularly through processes of long-distance communication within plants. This aim is being addressed by integrating genetic and genomic approaches with a broad-based understanding of plant physiology in both controlled conditions and the field.
An immediate applied aim of the program is to modify crop plants in order to increase productivity in conditions of challenging abiotic stress, with consequent improvement of yield in Saudi Arabia, the region and globally. A larger aspiration is to unlock seawater, by developing a new economically viable agricultural system where salt-tolerant crops are irrigated with partially desalinized seawater or brackish groundwater. A company, Red Sea Farms, has been established to facilitate this delivery.